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1. Recently, Lewis and Shisha [2] have proved the following.

THEOREM 1. Suppose O <p < o0, k is a positive integer, f is a real
Sfunction continuous in (a, b) (—oc < a < b << o), and (f,)n_, is a sequence
of real functions, monotone increasing of order k on (a, b), namely,

Iy ST #2
: : =0 (1
t(]f—l t{c—l e gkt

Salte) fulty) o Fulte)

whenever n =1 and a << t, < t, -+ < t, < b. Furthermore, suppose that
lim, .., IZ [fo(x) — f(x)1?dx = 0 (a Lebesgue integral). Then f, converges
uniformly to f in every [c, d] with a < ¢ < d < b.

When & = 1 (k = 2), Eq. (1) states that each f, is increasing (convex)
on(a, b). If k > 2, then [1, p. 381] (1) implies that for each n, f{¥~® exists and
is continuous in (a, b).

Theorem 1 naturally raises the question: Can (1), which expresses convexity
of the f, with respect to (#)}=4 [1, p. 375] be replaced by convexity of the f,
with respect to a general Tchebycheff system ? The answer is positive and is
the aim of the present article.

(2.) Tueorem 2. Let (u;)i=y (k = 1) be a Tchebycheff system on (a, b)
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(—o0 < a < b < o), namely, each u; is a real function, continuous in
(a, b), and

uy(ty) uty) o Uty
U (“o s UL 5eesy uk—l) _ uy (1) u(ty) o w(t) ~ 0 ?)
to, ti sy trq \
up(te)  upa(ty) - upy(tp)

whenever a <ty < t; *+ < b, <b.
Suppose 0 < p < 0, f is a real function, continuous in (a, b), and (f,)n_y
is a sequence of real functions, convex with respect to (u;)¥=} on (a, b), namely,

Uy, Uy oeey Upoq 5 [
U(O’ S RERRRE] k1xn)>0 (3)
tO H tl ey Tpo1 Iy - '

whenever n = 1 and a <ty <t, - < t, < b.

Suppose, again, lim,_, IZ [ fo(x) — f(x)|Pdx = 0. Then f, converges
uniformly to f in every [c, d] with a < ¢ < d < b.

Proof. Assume the conclusion is false. Then there exist ¢, d

(a <c<d<b), e >0, a subsequence of (f,),_;, again denoted by
(f)w-1, and a sequence (£, )., of points in [c, d] such that

| fulten) — f(ti,n)l =€ foralln @

Thus, (#,..)n-1 has a convergent subsequence (again denoted by (¢,.,.)a_;) with
a limit #.¢lc, d]. By (2), there must be a ¢, 0 <C ¢ < k — 1, with u,(t,) # 0.
This, together with the continuity of £, assures the existence of 8, a < ¢, —
8 < t,, + 6 < b such that

[ f(x) — f(»)] < /(%) forallx,yinl = (¢, — 6,1, +-8), (5
and
uy)# 0, [fO) - |1 — {ug(x)u, (¥} < €/(9) forallx,yinL (6)
Suppose k > 1. Set

=t —(k —j)k+ 118,  j=0...k—2
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(so that, in particular, 1, — § < £,) and choose t,_, € (f;_, , ;) satisfying

U (uo yeees Upog s ”1:—1) - 1 U (Uo seees Up—g s ulc»l); %)

to EERRE tk—:Za tkvl 3 ’0 EARRE] f/cfz, tlc
Uy gy Upn 5 Uy Uy yeury Up_o 5 Ug
U(O k-2 k1)<U(0 r—2 kl) (8)
fo s Bpas fpoq s Iy Lo seees Tpos Iy

(one t; missing) 0<{j<k—2

(where (8) holds for all possible omissions). This choice is possible since

U (uO seees Ups s uk—l) -~ O,
tO sty tkAZ, tlc /

the left-hand side of (7), as a function of #,_, , is continuous at #,_; = t; ;
and the left-hand side of (8), for each omission, -0 as #,_, — 1, .
Similarly, choose #;,; € (¢, , 1, -+ 8) such that

Uy seney Up—o s Up 1 Uy ooy Upo » Up
U(O, s U2 ]”1)>7U(0’ ak2’k1)’ ©9)
fosoos Tocns tiin) ~ 3 Nty tes, 1y
Ug goeey Up— U Up seeny Up_ U
U( 0 9eees Uk—2 » k1)<U(09 s Upa s kl)’ (10)
t() AR tk-—? 9 tk ’ rlc+1 ’0 seny tk—2 > tk

(one #; missing) 0 <j<<k—2
where (10) holds for all possible omissions.
If k = 1, let £, be a point of (¢, — 8, ;) satisfying
() ug(ty) > dug(ty),
and let £, be a point of (¢,, t; + 8) satisfying
Gex) () > Fuglty)-
Let k = 1. Choose §; > 0 so that
e — 8 <ty — & <ty + 8 <t + 8, (1)

and the intervals I, = (t; — &,, ¢ -+ 6;), j = 0,..., k -+ 1, are mutually
disjoint; (12)

if rel, (j=0,1,..,k -+ 1), then (7)-(10), with each #; replaced by r;,
continue to hold in case k¥ > 1 and (x) and (xx) continue to hold in case
k=1. (13)

Observe, from (11), that ;C7, forj=0,1,...k -+ 1.
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There exists an N; > 1, such thatif n > Ny and 0 <<j < k 4+ 1,j # k,
then there is a #; ,, € I; with

| fultsn) — F(i,0)| < €/(9K). (14)
Choose n = N, so that £, , € I .
Case 1 (see (4)).
Jolti,n) — f(ten) < —e (15)
Consider

U( Uy, Uy 5eeey Upq afn )

to,n ’ tl.n 3eecy tk~1,n 3 tk,n

(2o, ) e Up(tp_1,7) Uo(tr,m)
U1({o,n) ul(tk.—l,n) ul(t_k.n)
- uk—}(’o,n) uk—l(l:k 1.m) uk—litk n)
Flto) = L0, - ot~ ) Flte) =0
' (16)
If0 <j<k+1,j # k, then by (14), (5), and (6),
. (tk n)
fﬂ( ] ﬂ) q(t ) q(t] n)
< alts) = F0] + 1030 = ftu) + St - |1 — 2]
< €/(3k). (17)

Denote by u* the minor of f,(t;,,) — f(fx.») in (16). By (2), and by (7)
(or (%)), (8) and (13), the minor of every other entry of the last row of (16)
is >0 and <3u*. Thus, by (15) and (17),

U( Up , Uy yeees Uy 5 [ ) < —eu* + k[e/(3k)] 3u* =

t().n ’ tl,n seeey tk-1,n s tlc,n
contradicting (3).

Case 2.

%fn(tk,n) +f(tk,n) < —e (18)
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We consider, this time,

U( Uy, Uy seny Upo > Uiy« [ ):U( Up s Uy veees Wpn , Uiy — [ )

tO,n s tl,n ERRRR] tk-2,n s tk.n L] [k+1.n tO,n E] tl.n serey tkAz,n s ’Icl{,n s rk,n

Up(to.n) Upll—2.n)
ul(’:o,n) ul(’lc.~2,n)
- uk‘].-(to,n) uk—l(t'k%—z,n)
_fn(to,n) + L}:f(t;c]nZ) uq(t(),n) _fn(tkf‘z.n) -+ z}:((t;ckn)) uq(th'~2,'rt)
Up(ti41.n) uo(ty.,n)
”1(1‘1.:.«—1.") ul(lh".n)
ulxi~1(f.l.:+1.n) uls'ml(‘tk,n) (19
. St - .
.fn(tl.'-H,n) + u (fk ) u(l(’k+1,n) ,fn(tl.".n) J\" ‘/(tk,n)

(with an obvious meaning if & = 1).

Denote by u** the minor of —f, (¢ ,) + f(t,.) in (19). By (9), (10) (or
(x%)), and (13), the absolute value of the minor of every other entry of the
last row of (19) is < 3u**. Thus, by (18) and (17),

U( Uy s Uy yoeey Upen s Uga s foy ) < —eu** 1 k[e/(3k)] 3ur* = 0,

t[),n > tl,n seeey t/c——2,n ] tl:,‘flv . t/.‘+1,n

contradicting (3).
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