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1. Recently, Lewis and Shisha [2] have proved the following.

THEOREM 1. Suppose 0 < p < 00, k is a positil'e integer, f is a real
function continuous in (a, b) (- 00 < a < b < (0), and (fn)~~1 is a sequence
of real functions, monotone increasing of order k on (a, b), namely,

whenever n ~ 1 and a < to < II ... < tIc < b. Furthermore, suppose that
limn~oo S: Ifix) - f(x)] P dx = 0 (a Lebesgue integral). Then fn converges
uniformly to f in every [c, d] with a < c < d < b.

When k c=c I (k = 2), Eq. (I) states that each fn is increasing (convex)
on (a, b). If k ~ 2, then [I, p. 381] (1) implies that for each n,J~"-2) exists and
is continuous in (a, b).

Theorem 1 naturally raises the question: Can (1), which expresses convexity
of the fn with respect to (tj);:t [1, p. 375] be replaced by convexity of the fn
with respect to a general Tchebycheff system? The answer is positive and is
the aim of the present article.

(2.) THEOREM 2. Let (Uj);":~ (k ~ 1) be a Tchebycheff system on (a, b)
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(- 00 < a < b < (0), namely, each Uj is a real function, continuous in
(a, b), and

uo(to) UO(tl) UO(tk-l)

V (uo , Ul ,... , Uk-I) = Ul(tO) Ul(tl) Ul(tIH) >0 (2)
to, tl ,... , tk- l

UIc-l(tO) Uk-l(tl) UIc-l(tk-l)

whenever a < to < tl ... < tk- 1 < b.
Suppose 0 < p < 00, f is a real function, continuous in (a, b), and (fn)~~l

is a sequence of real functions, convex with respect to (Uj)~:(} on (a, b), namely,

whenever n ~ 1 and a < to < tl ... < tk < b.
Suppose, again, limn_ ro f: Ifn(x) ~ f(x)jP dx = O. Then fn converges

uniformly to f in every [c, d] with a < c < d < b.

Proof Assume the conclusion is false. Then there exist c, d
(a < c < d < b), E > 0, a subsequence of (fn):~l' again denoted by
(fn)~~l , and a sequence (tlc.n)~~l of points in [c, d] such that

for all n. (4)

Thus, (tlc,nr::=l has a convergent subsequence (again denoted by (t'c,n)~~l) with
a limit tkdc, d]. By (2), there must be a q, 0 ~ q ~ k - 1, with uq(tk) # O.
This, together with the continuity off, assures the existence of 8, a < tic 
8 < tic + 8 < b such that

and

I f(x) - f(Y)1 < E(9k) for all x, y in I = (t" - 8, tic + 8), (5)

If(Y)1 . I 1 - {uq(x)/uq{y)} [ < E/(9k) for all x, y in I. (6)

Suppose k > 1. Set

t j = t" - (k - j)(k + 1)-18, .i = 0, ... , k - 2
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(so that, in particular, t,c - °< to) and choose tlc - I EO (tlc- 2 , tic) satisfying

(one t; missing) °~j ~ k - 2

(where (8) holds for all possible omissions). This choice is possible since

the left-hand side of (7), as a function of tic-I, is continuous at t lc - I = tic ;
and the left-hand side of (8), for each omission, -0 as t"-I --+ tic .

Similarly, choose tic+! E (tk , tic + 0) such that

u ( Uo , , Uk-2' Uk-I) < U (Uo , , UIc-2' Uk-I) (10)
to , , tlc - 2 , tic, t"+1 to , , t'C-2, tic '

(one t; missing) °~j ~ k - 2

where (10) holds for all possible omissions.
If k = 1, let to be a point of (tl - 0, tI) satisfying

(*) uo(to) > !UO(tI),

and let t2 be a point of (tl , tl + 0) satisfying

(**) UO(t2) > !UO(tI)'

Let k ~ 1. Choose 01 > °so that

(11)

and the intervals I j = (tj - °1, t; + 01), j = 0, ... , k + 1, are mutually
disjoint; (12)

if Yj E I j (j = 0, 1, ... , k + 1), then (7)-(10), with each t; replaced by Y;,

continue to hold in case k > 1 and (*) and (**) continue to hold in case
k = 1. (13)

Observe, from (11), that I j C I, for j = 0, 1, ... , k + 1.



L p AND UNIFORM CONVERGENCE 369

There exists an N1 ~ I, such that if n ~ N1 and 0 ~j ~ k + 1,j =P k,
then there is a ti,n E Ii with

(14)

Choose n ~ N1 so that tk,n Elk'

Case 1 (see (4».

(15)

Consider

u ( Uo , U1 , , Uk-I' fn )
to,n, tl. n , , tk-l. n , tk,n

. .
Uk-l(tk-l. n) Uk-l(tk,n)

... fitk-l. n) - ~((t;-n» Uq{tk-1,n) fn(tk.n) - f(tk,n)
q k.n

(16)

Uo(to.n)
u1(to,n)

Uo(tk-l.n)
Ul(tk-l. n)

Uo(tk,n)
Ul(tk.n)

If 0 ~ j ~ k + I, j =P k, then by (14), (5), and (6),

Iin(tj,n) - ~((t;-n» Uq(ti,n)!
q k,n

~ Ifn(ti.n) - f(tj,n) I + If(tj,n) - f(tk,n) I + If(tk,n)1 ., I _ ~q((:j,n» I
q k,n

< Ej(3k). (17)

Denote by u* the minor of fn(tk,n) - !(tk,n) in (16). By (2), and by (7)
(or (*», (8) and (13), the minor of every other entry of the last row of (16)
is >0 and <3u*. Thus, by (15) and (17),

u ( UO, U1 , , Uk-l ,j~ ) < -EU* + k[Ej(3k)] 3u* = 0,
to•n , tl. n , , tk-l. n , tlc,n

contradicting (3).

Case 2.

(18)
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We consider, this time,
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u ( U o , U1 ,,,., Uk- 2 ' Uk- 1 .In ) _ u ( Uo , U1 , ... , Uk-2, Uk-I, -In )

fO•n , fl,n , ... , f k- 2,n, f k.n , fk+l. n fO•n , fl." ,,,., f k- 2,,,, fk.'·l,,, , f k,,,

Uo(to,n)

U1(to,n)

UO(tk-2,n)

U1(t"-2,,,)

Uk-l(fk- 2,,,)

~rnCt"-2.n) +~~;~~~) Uq(t"_2,n)

Uo(tk+l.n)

Ut(t','+l,n)

uo(t",,,)
U1(t"',n)

(19)

(with an obvious meaning if k= J),

Denote by u** the minor of -!,,(tk,n) + f(f,c",) in (19). By (9), (10) (or
(**)), and (J 3), the absolute value of the minor of every other entry of the
last row of (19) is < 3u**. Thus, by (18) and (17),

u ( uu, Ut ,,,., U"'-2' U,,-t ,f" ) < -EU** + k[Ej(3k)] 3u** = 0,
to,n' tl." ,oo., t"_2.n' f,,',,,, f"+l.n

contradicting (3),
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